Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Theor Appl Genet ; 137(5): 106, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622441

RESUMO

KEY MESSAGE: A new resistance locus acting against the potato cyst nematode Globodera pallida was mapped to chromosome VI in the diploid wild potato species Solanum spegazzinii CPC 7195. The potato cyst nematodes (PCN) Globodera pallida and Globodera rostochiensis are economically important potato pests in almost all regions where potato is grown. One important management strategy involves deployment through introgression breeding into modern cultivars of new sources of naturally occurring resistance from wild potato species. We describe a new source of resistance to G. pallida from wild potato germplasm. The diploid species Solanum spegazzinii Bitter accession CPC 7195 shows resistance to G. pallida pathotypes Pa1 and Pa2/3. A cross and first backcross of S. spegazzinii with Solanum tuberosum Group Phureja cultivar Mayan Gold were performed, and the level of resistance to G. pallida Pa2/3 was determined in progeny clones. Bulk-segregant analysis (BSA) using generic mapping enrichment sequencing (GenSeq) and genotyping-by-sequencing were performed to identify single-nucleotide polymorphisms (SNPs) that are genetically linked to the resistance, using S. tuberosum Group Phureja clone DM1-3 516 R44 as a reference genome. These SNPs were converted into allele-specific PCR assays, and the resistance was mapped to an interval of roughly 118 kb on chromosome VI. This newly identified resistance, which we call Gpa VIlspg, can be used in future efforts to produce modern cultivars with enhanced and broad-spectrum resistances to the major pests and pathogens of potato.


Assuntos
Solanum tuberosum , Solanum , Tylenchoidea , Animais , Solanum tuberosum/genética , Solanum/genética , Doenças das Plantas/genética , Melhoramento Vegetal
2.
Theor Appl Genet ; 137(3): 64, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430392

RESUMO

KEY MESSAGE: An improved estimator of genomic relatedness using low-depth high-throughput sequencing data for autopolyploids is developed. Its outputs strongly correlate with SNP array-based estimates and are available in the package GUSrelate. High-throughput sequencing (HTS) methods have reduced sequencing costs and resources compared to array-based tools, facilitating the investigation of many non-model polyploid species. One important quantity that can be computed from HTS data is the genetic relatedness between all individuals in a population. However, HTS data are often messy, with multiple sources of errors (i.e. sequencing errors or missing parental alleles) which, if not accounted for, can lead to bias in genomic relatedness estimates. We derive a new estimator for constructing a genomic relationship matrix (GRM) from HTS data for autopolyploid species that accounts for errors associated with low sequencing depths, implemented in the R package GUSrelate. Simulations revealed that GUSrelate performed similarly to existing GRM methods at high depth but reduced bias in self-relatedness estimates when the sequencing depth was low. Using a panel consisting of 351 tetraploid potato genotypes, we found that GUSrelate produced GRMs from genotyping-by-sequencing (GBS) data that were highly correlated with a GRM computed from SNP array data, and less biased than existing methods when benchmarking against the array-based GRM estimates. GUSrelate provides researchers with a tool to reliably construct GRMs from low-depth HTS data.


Assuntos
Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único , Humanos , Técnicas de Genotipagem/métodos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Alelos
3.
Food Energy Secur ; 12(1): e377, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37035023

RESUMO

Previously, we developed and applied a glasshouse screen for potato tuber yield under heat stress and identified a candidate gene (HSc70) for heat tolerance by genetic analysis of a diploid potato population. Specific allelic variants were expressed at high levels on exposure to moderately elevated temperature due to variations in gene promoter sequence. In this study, we aimed to confirm the results from the glasshouse screen in field trials conducted over several seasons and locations including those in Kenya, Malawi and the UK. We extend our understanding of the HSc70 gene and demonstrate that expression level of HSc70 correlates with tolerance to heat stress in a wide range of wild potato relatives. The physiological basis of the protective effect of HSc70 was explored and we show that genotypes carrying the highly expressed HSc70 A2 allele are protected against photooxidative damage to PSII induced by abiotic stresses. Overall, we show the potential of HSc70 alleles for breeding resilient potato genotypes for multiple environments.

5.
Nature ; 606(7914): 535-541, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676481

RESUMO

Potato (Solanum tuberosum L.) is the world's most important non-cereal food crop, and the vast majority of commercially grown cultivars are highly heterozygous tetraploids. Advances in diploid hybrid breeding based on true seeds have the potential to revolutionize future potato breeding and production1-4. So far, relatively few studies have examined the genome evolution and diversity of wild and cultivated landrace potatoes, which limits the application of their diversity in potato breeding. Here we assemble 44 high-quality diploid potato genomes from 24 wild and 20 cultivated accessions that are representative of Solanum section Petota, the tuber-bearing clade, as well as 2 genomes from the neighbouring section, Etuberosum. Extensive discordance of phylogenomic relationships suggests the complexity of potato evolution. We find that the potato genome substantially expanded its repertoire of disease-resistance genes when compared with closely related seed-propagated solanaceous crops, indicative of the effect of tuber-based propagation strategies on the evolution of the potato genome. We discover a transcription factor that determines tuber identity and interacts with the mobile tuberization inductive signal SP6A. We also identify 561,433 high-confidence structural variants and construct a map of large inversions, which provides insights for improving inbred lines and precluding potential linkage drag, as exemplified by a 5.8-Mb inversion that is associated with carotenoid content in tubers. This study will accelerate hybrid potato breeding and enrich our understanding of the evolution and biology of potato as a global staple food crop.


Assuntos
Produtos Agrícolas , Evolução Molecular , Genoma de Planta , Solanum tuberosum , Produtos Agrícolas/genética , Genoma de Planta/genética , Melhoramento Vegetal , Tubérculos/genética , Solanum tuberosum/genética
7.
Heredity (Edinb) ; 127(3): 253-265, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331028

RESUMO

Tuber dormancy and sprouting are commercially important potato traits as long-term tuber storage is necessary to ensure year-round availability. Premature dormancy release and sprout growth in tubers during storage can result in a significant deterioration in product quality. In addition, the main chemical sprout suppressant chlorpropham has been withdrawn in Europe, necessitating alternative approaches for controlling sprouting. Breeding potato cultivars with longer dormancy and slower sprout growth is a desirable goal, although this must be tempered by the needs of the seed potato industry, where dormancy break and sprout vigour are required for rapid emergence. We have performed a detailed genetic analysis of tuber sprout growth using a diploid potato population derived from two highly heterozygous parents. A dual approach employing conventional QTL analysis allied to a combined bulk-segregant analysis (BSA) using a novel potato whole-exome capture (WEC) platform was evaluated. Tubers were assessed for sprout growth in storage at six time-points over two consecutive growing seasons. Genetic analysis revealed the presence of main QTL on five chromosomes, several of which were consistent across two growing seasons. In addition, phenotypic bulks displaying extreme sprout growth phenotypes were subjected to WEC sequencing for performing BSA. The combined BSA and WEC approach corroborated QTL locations and served to narrow the associated genomic regions, while also identifying new QTL for further investigation. Overall, our findings reveal a very complex genetic architecture for tuber sprouting and sprout growth, which has implications both for potato and other root, bulb and tuber crops where long-term storage is essential.


Assuntos
Solanum tuberosum , Diploide , Exoma , Melhoramento Vegetal , Tubérculos/genética , Solanum tuberosum/genética
8.
Front Plant Sci ; 12: 661194, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841485

RESUMO

Potato cyst nematodes (PCN) are economically important pests with a worldwide distribution in all temperate regions where potatoes are grown. Because above ground symptoms are non-specific, and detection of cysts in the soil is determined by the intensity of sampling, infestations are frequently spread before they are recognised. PCN cysts are resilient and persistent; their cargo of eggs can remain viable for over two decades, and thus once introduced PCN are very difficult to eradicate. Various control methods have been proposed, with resistant varieties being a key environmentally friendly and effective component of an integrated management programme. Wild and landrace relatives of cultivated potato have provided a source of PCN resistance genes that have been used in breeding programmes with varying levels of success. Producing a PCN resistant variety requires concerted effort over many years before it reaches what can be the biggest hurdle-commercial acceptance. Recent advances in potato genomics have provided tools to rapidly map resistance genes and to develop molecular markers to aid selection during breeding. This review will focus on the translation of these opportunities into durably PCN resistant varieties.

9.
Front Plant Sci ; 12: 612843, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33643346

RESUMO

Traditional phenotyping techniques have long been a bottleneck in breeding programs and genotype- phenotype association studies in potato, as these methods are labor-intensive and time consuming. In addition, depending on the trait measured and metric adopted, they suffer from varying degrees of user bias and inaccuracy, and hence these challenges have effectively prevented the execution of large-scale population-based field studies. This is true not only for commercial traits (e.g., yield, tuber size, and shape), but also for traits strongly associated with plant performance (e.g., canopy development, canopy architecture, and growth rates). This study demonstrates how the use of point cloud data obtained from low-cost UAV imaging can be used to create 3D surface models of the plant canopy, from which detailed and accurate data on plant height and its distribution, canopy ground cover and canopy volume can be obtained over the growing season. Comparison of the canopy datasets at different temporal points enabled the identification of distinct patterns of canopy development, including different patterns of growth, plant lodging, maturity and senescence. Three varieties are presented as exemplars. Variety Nadine presented the growth pattern of an early maturing variety, showing rapid initial growth followed by rapid onset of senescence and plant death. Varieties Bonnie and Bounty presented the pattern of intermediate to late maturing varieties, with Bonnie also showing early canopy lodging. The methodological approach used in this study may alleviate one of the current bottlenecks in the study of plant development, paving the way for an expansion in the scale of future genotype-phenotype association studies.

10.
J Integr Plant Biol ; 63(4): 628-633, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32965762

RESUMO

High heterozygosity and tetrasomic inheritance complicate studies of asexually propagated polyploids, such as potato. Reverse genetics approaches, especially mutant library construction, can be an ideal choice if a proper mutagenesis genotype is available. Here, we aimed to generate a model system for potato research using anther cultures of Solanum verrucosum, a self-compatible diploid potato with strong late blight resistance. Six of the 23 regenerants obtained (SVA4, SVA7, SVA22, SVA23, SVA32, and SVA33) were diploids, and their homozygosity was estimated to be >99.99% with 22 polymorphic InDel makers. Two lines-SVA4 and SVA32-had reduced stature (plant height ≤80 cm), high seed yield (>1,000 seeds/plant), and good tuber set (>30 tubers/plant). We further confirmed the full homozygosity of SVA4 and SVA32 using whole-genome resequencing. These two regenerants possess all the characteristics of a model plant: diploidy, 100% homozygosity, self-compatibility, and amenability to transgenesis. Thus, we have successfully generated two lines, SVA4 and SVA32, which can potentially be used for mutagenesis and as model plants to rejuvenate current methods of conducting potato research.


Assuntos
Solanum/genética , Genótipo , Homozigoto , Doenças das Plantas/genética , Sequenciamento Completo do Genoma
12.
Plant J ; 103(6): 2263-2278, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32593210

RESUMO

Potato tuber formation is a secondary developmental programme by which cells in the subapical stolon region divide and radially expand to further differentiate into starch-accumulating parenchyma. Although some details of the molecular pathway that signals tuberisation are known, important gaps in our knowledge persist. Here, the role of a member of the TERMINAL FLOWER 1/CENTRORADIALIS gene family (termed StCEN) in the negative control of tuberisation is demonstrated for what is thought to be the first time. It is shown that reduced expression of StCEN accelerates tuber formation whereas transgenic lines overexpressing this gene display delayed tuberisation and reduced tuber yield. Protein-protein interaction studies (yeast two-hybrid and bimolecular fluorescence complementation) demonstrate that StCEN binds components of the recently described tuberigen activation complex. Using transient transactivation assays, we show that the StSP6A tuberisation signal is an activation target of the tuberigen activation complex, and that co-expression of StCEN blocks activation of the StSP6A gene by StFD-Like-1. Transcriptomic analysis of transgenic lines misexpressing StCEN identifies early transcriptional events in tuber formation. These results demonstrate that StCEN suppresses tuberisation by directly antagonising the function of StSP6A in stolons, identifying StCEN as a breeding marker to improve tuber initiation and yield through the selection of genotypes with reduced StCEN expression.


Assuntos
Proteínas de Plantas/fisiologia , Tubérculos/crescimento & desenvolvimento , Solanum tuberosum/crescimento & desenvolvimento , Genes de Plantas , Proteínas de Plantas/metabolismo , Tubérculos/metabolismo , Plantas Geneticamente Modificadas , Solanum tuberosum/metabolismo , Transcriptoma
13.
Theor Appl Genet ; 133(3): 967-980, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31950199

RESUMO

KEY MESSAGE: Novel major gene resistance against Potato virus Y in diploid populations of Solanum tuberosum Groups Phureja and Tuberosum was biologically and genetically characterised. Named Ry(o)phu, it mapped to chromosome 9. A new source of genetic resistance derived from Solanum tuberosum Group Phureja against Potato virus Y (PVY) was identified and genetically characterised in three diploid biparental potato populations. Segregation data for two populations (05H1 and 08H1) suggested the presence of a single dominant gene for resistance to PVY which, following DaRT analysis of the 08H1 cross, was mapped to chromosome 9. More detailed genetic analysis of resistance utilised a well-characterised SNP-linkage map for the 06H1 population, together with newly generated marker data. In these plants, which have both S. tuberosum Group Phureja and S. tuberosum Group Tuberosum in their pedigree, the resistance was shown to map to chromosome 9 at a locus not previously associated with PVY resistance, although there is evidence for at least one other genetic factor controlling PVY infection. The resistance factor location on chromosome 9 (named as Ry(o)phu) suggests a potential role of NB-LRR genes in this resistance. Phenotypic analysis using a GUS-tagged virus revealed that a small amount of PVY replication occurred in occasional groups of epidermal cells in inoculated leaves of resistant plants, without inducing any visible hypersensitive response. However, the virus did not enter the vascular system and systemic spread was completely prevented.


Assuntos
Resistência à Doença/genética , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/genética , Potyvirus/patogenicidade , Solanum tuberosum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Genes de Plantas , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Ploidias , Polimorfismo de Nucleotídeo Único , Potyvirus/genética , Potyvirus/metabolismo , Locos de Características Quantitativas , Solanum tuberosum/metabolismo , Solanum tuberosum/virologia
14.
Front Plant Sci ; 10: 139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30846993

RESUMO

China is the world's leading country for potato production but potato is not native to China. To gain insights into the genetic diversity of potato germplasm various studies have been performed but no study has been reported for potato landraces in China. To improve the available genepool for future potato breeding programs, a diverse population containing 292 genotypes (including foreign elite lines, local landraces and cultivars) was developed and genotyped using 30 SSR markers covering the entire potato genome. A total of 174 alleles were detected with an average of 5.5 alleles per locus. The model-based structure analysis discriminated the population into two main sub-groups, which can be further subdivided into seven groups based on collection sites. One sub-group (P1) revealed less genetic diversity than other (P2) and contained a higher number of commercial cultivars possibly indicating a slight reduction in diversity due to selection in breeding programs. The P2 sub-group showed a wider range of genetic diversity with more new and unique alleles attained from wild relatives. The potato landraces, clustered in sub-population P1 may be derived from historical population imported from ancient European and International Potato Center genotypes while sub-population P2 may be derived from modern populations from International Potato Center and European genotypes. It is proposed that in the first step, the potato genotypes were introduced from Europe to China, domesticated as landraces, and then hybridized for modern cultivars.

15.
Gigascience ; 8(3)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624602

RESUMO

BACKGROUND: A high-quality genome sequence of any model organism is an essential starting point for genetic and other studies. Older clone-based methods are slow and expensive, whereas faster, cheaper short-read-only assemblies can be incomplete and highly fragmented, which minimizes their usefulness. The last few years have seen the introduction of many new technologies for genome assembly. These new technologies and associated new algorithms are typically benchmarked on microbial genomes or, if they scale appropriately, on larger (e.g., human) genomes. However, plant genomes can be much more repetitive and larger than the human genome, and plant biochemistry often makes obtaining high-quality DNA that is free from contaminants difficult. Reflecting their challenging nature, we observe that plant genome assembly statistics are typically poorer than for vertebrates. RESULTS: Here, we compare Illumina short read, Pacific Biosciences long read, 10x Genomics linked reads, Dovetail Hi-C, and BioNano Genomics optical maps, singly and combined, in producing high-quality long-range genome assemblies of the potato species Solanum verrucosum. We benchmark the assemblies for completeness and accuracy, as well as DNA compute requirements and sequencing costs. CONCLUSIONS: The field of genome sequencing and assembly is reaching maturity, and the differences we observe between assemblies are surprisingly small. We expect that our results will be helpful to other genome projects, and that these datasets will be used in benchmarking by assembly algorithm developers.


Assuntos
Genoma de Planta , Genômica/métodos , Análise de Sequência de DNA/métodos , Mapeamento de Sequências Contíguas , Custos e Análise de Custo , Genes de Plantas , Genômica/economia , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA/economia , Solanaceae/genética
16.
J Exp Bot ; 70(3): 835-843, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30395257

RESUMO

Potato tuber bud dormancy break followed by premature sprouting is a major commercial problem which results in quality losses and decreased tuber marketability. An approach to controlling premature tuber sprouting is to develop potato cultivars with a longer dormancy period and/or reduced rate of sprout growth. Our recent studies using a potato diploid population have identified several quantitative trait loci (QTLs) that are associated with tuber sprout growth. In the current study, we aim to characterize a candidate gene associated with one of the largest effect QTLs for rapid tuber sprout growth on potato chromosome 3. Underlying this QTL is a gene encoding a TERMINAL FLOWER 1/CENTRORADIALIS homologue (PGSC0003DMG400014322). Here, we use a transgenic approach to manipulate the expression level of the CEN family member in a potato tetraploid genotype (cv. Désirée). We demonstrate a clear effect of manipulation of StCEN expression, with decreased expression levels associated with an increased rate of sprout growth, and overexpressing lines showing a lower rate of sprout growth than controls. Associated with different levels of StCEN expression were different levels of abscisic acid and cytokinins, implying a role in controlling the levels of plant growth regulators in the apical meristem.


Assuntos
Genes de Plantas , Proteínas de Plantas/genética , Tubérculos/crescimento & desenvolvimento , Solanum tuberosum/genética , Família Multigênica , Proteínas de Plantas/metabolismo , Tubérculos/genética , Locos de Características Quantitativas , Solanum tuberosum/crescimento & desenvolvimento
17.
G3 (Bethesda) ; 8(10): 3185-3202, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30082329

RESUMO

Genome-wide association studies (GWAS) have become a powerful tool for analyzing complex traits in crop plants. The current study evaluates the efficacy of various GWAS models and methods for elucidating population structure in potato. The presence of significant population structure can lead to detection of spurious marker-trait associations, as well as mask true ones. While appropriate statistical models are needed to detect true marker-trait associations, in most published potato GWAS, a 'one model fits all traits' approach has been adopted. We have examined various GWAS models on a large association panel comprising diverse tetraploid potato cultivars and breeding lines, genotyped with single nucleotide polymorphism (SNP) markers. Phenotypic data were generated for 20 quantitative traits assessed in different environments. Best Linear Unbiased Estimates (BLUEs) for these traits were obtained for use in assessing GWAS models. Goodness of fit of GWAS models, derived using different combinations of kinship and population structure for all traits, was evaluated using Quantile-Quantile (Q-Q) plots and genomic control inflation factors (λGC). Kinship was found to play a major role in correcting population confounding effects and results advocate a 'trait-specific' fit of different GWAS models. A survey of genome-wide linkage disequilibrium (LD), one of the critical factors affecting GWAS, is also presented and our findings are compared to other recent studies in potato. The genetic material used here, and the outputs of this study represent a novel resource for genetic analysis in potato.


Assuntos
Mapeamento Cromossômico , Evolução Molecular , Genoma de Planta , Estudo de Associação Genômica Ampla , Genômica , Desequilíbrio de Ligação , Solanum tuberosum/genética , Tetraploidia , Alelos , Frequência do Gene , Variação Genética , Genética Populacional , Genômica/métodos , Genótipo , Modelos Genéticos , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável
18.
Theor Appl Genet ; 131(6): 1287-1297, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29560514

RESUMO

KEY MESSAGE: A broad-spectrum late blight disease-resistance gene from Solanum verrucosum has been mapped to potato chromosome 9. The gene is distinct from previously identified-resistance genes. We have identified and characterised a broad-spectrum resistance to Phytophthora infestans from the wild Mexican species Solanum verrucosum. Diagnostic resistance gene enrichment (dRenSeq) revealed that the resistance is not conferred by previously identified nucleotide-binding, leucine-rich repeat genes. Utilising the sequenced potato genome as a reference, two complementary enrichment strategies that target resistance genes (RenSeq) and single/low-copy number genes (Generic-mapping enrichment Sequencing; GenSeq), respectively, were deployed for the rapid, SNP-based mapping of the resistance through bulked-segregant analysis. Both approaches independently positioned the resistance, referred to as Rpi-ver1, to the distal end of potato chromosome 9. Stringent post-enrichment read filtering identified a total of 64 informative SNPs that corresponded to the expected ratio for significant polymorphisms in the parents as well as the bulks. Of these, 61 SNPs are located on potato chromosome 9 and reside within 27 individual genes, which in the sequenced potato clone DM locate to positions 45.9 to 60.9 Mb. RenSeq- and GenSeq-derived SNPs within the target region were converted into allele-specific PCR-based KASP markers and further defined the position of the resistance to a 4.3 Mb interval at the bottom end of chromosome 9 between positions 52.62-56.98 Mb.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Solanum/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Diploide , Marcadores Genéticos , Phytophthora infestans , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Solanum/microbiologia
19.
Plant Biotechnol J ; 16(1): 197-207, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28509353

RESUMO

For many commercial potato cultivars, tuber yield is optimal at average daytime temperatures in the range of 14-22 °C. Further rises in ambient temperature can reduce or completely inhibit potato tuber production, with damaging consequences for both producer and consumer. The aim of this study was to use a genetic screen based on a model tuberization assay to identify quantitative trait loci (QTL) associated with enhanced tuber yield. A candidate gene encoding HSc70 was identified within one of the three QTL intervals associated with elevated yield in a Phureja-Tuberosum hybrid diploid potato population (06H1). A particular HSc70 allelic variant was linked to elevated yield in the 06H1 progeny. Expression of this allelic variant was much higher than other alleles, particularly on exposure to moderately elevated temperature. Transient expression of this allele in Nicotiana benthamiana resulted in significantly enhanced tolerance to elevated temperature. An TA repeat element was present in the promoter of this allele, but not in other HSc70 alleles identified in the population. Expression of the HSc70 allelic variant under its native promoter in the potato cultivar Desiree resulted in enhanced HSc70 expression at elevated temperature. This was reflected in greater tolerance to heat stress as determined by improved yield under moderately elevated temperature in a model nodal cutting tuberization system and in plants grown from stem cuttings. Our results identify HSc70 expression level as a significant factor influencing yield stability under moderately elevated temperature and identify specific allelic variants of HSc70 for the induction of thermotolerance via conventional introgression or molecular breeding approaches.


Assuntos
Resposta ao Choque Térmico/fisiologia , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Alelos , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Resposta ao Choque Térmico/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas/genética , Solanum tuberosum/genética , Temperatura
20.
Front Plant Sci ; 9: 1742, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619382

RESUMO

Anthocyanins are plant pigments responsible for the colors of many flowers, fruits and storage organs and have roles in abiotic and biotic stress resistance. Anthocyanins and polyphenols are bioactive compounds in plants including potato (Solanum tuberosum L.) which is the most important non-cereal crop in the world, cultivated for its tubers rich in starch and nutrients. The genetic regulation of the flavonoid biosynthetic pathway is relatively well known leading to the formation of anthocyanins. However, our knowledge of post-transcriptional regulation of anthocyanin biosynthesis is limited. There is increasing evidence that micro RNAs (miRNAs) and other small RNAs can regulate the expression level of key factors in anthocyanin production. In this study we have found strong associations between the high levels of miR828, TAS4 D4(-) and purple/red color of tuber skin and flesh. This was confirmed not only in different cultivars but in pigmented and non-pigmented sectors of the same tuber. Phytochemical analyses verified the levels of anthocyanins and polyphenols in different tissues. We showed that miR828 is able to direct cleavage of the RNA originating from Trans-acting siRNA gene 4 (TAS4) and initiate the production of phased small interfering RNAs (siRNAs) whose production depends on RNA-dependent RNA polymerase 6 (RDR6). MYB transcription factors were predicted as potential targets of miR828 and TAS4 D4(-) and their expression was characterized. MYB12 and R2R3-MYB genes showed decreased expression levels in purple skin and flesh in contrast with high levels of small RNAs in the same tissues. Moreover, we confirmed that R2R3-MYB and MYB-36284 are direct targets of the small RNAs. Overall, this study sheds light on the small RNA directed anthocyanin regulation in potato, which is an important member of the Solanaceae family.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...